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Multistart Tabu Search and Diversification Strategies
for the Quadratic Assignment Problem

Tabitha James, César Rego, and Fred Glover

Abstract—The quadratic assignment problem (QAP) is a well-
known combinatorial optimization problem with a wide variety of
applications, prominently including the facility location problem.
The acknowledged difficulty of the QAP has made it the focus of
many metaheuristic solution approaches. In this paper, we show
the benefit of utilizing strategic diversification within the tabu
search (TS) framework for the QAP, by incorporating several di-
versification and multistart TS variants. Computational results for
an extensive and challenging set of QAP benchmark test problems
demonstrate the ability of our TS variants to improve on a classic
TS approach that is one of the principal and most extensively used
methods for the QAP. We also show that our new procedures are
highly competitive with the best recently introduced methods from
the literature, including more complex hybrid approaches that
incorporate the classic TS method as a subroutine.

Index Terms—Combinatorial optimization, quadratic assign-
ment problem (QAP), tabu search (TS).

I. INTRODUCTION

THE quadratic assignment problem (QAP) is an NP-hard
combinatorial optimization problem first introduced by

Koopmans and Beckmann [44] to model a facility location
problem. In this context, the objective is to find a minimum
cost assignment of facilities to locations considering the flow of
materials between facilities and the distance between locations.
The problem can be formulated as follows:

min
p∈P

z(p) =
n∑

i=1

n∑
j=1

fijdp(i)p(j) (1)

where f is the flow matrix, d is the distance matrix, p is
a permutation vector of n indices of facilities (or locations)
mapping a possible assignment of n facilities to n locations,
and P is the set of all n-vector permutations. For each pair of as-
signments r = p(i) and s = p(j) in p, the flow fij between the
two facilities i and j is multiplied by the distance drs between
the two locations r and s. The sum of these terms over all pairs
gives the total cost assignment z(p) for the permutation p. The
objective is to find a permutation p∗ in P of minimum total cost.
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Although facility location has been the most popular applica-
tion of the QAP, a great number of other applications have also
been encountered in a variety of other domains. The blackboard
wiring problem in electronics, the arrangement of electronic
components in printed circuit boards and in microchips, the
balancing of turbine runners, the analysis of chemical re-
actions in chemistry, machine scheduling in manufacturing,
load balancing and task allocation in parallel and distributed
computing, statistical data analysis, information retrieval, and
transportation are among the better known examples of ap-
plications of the QAP in systems engineering [15]. It is also
possible to formulate several other well-known combinatorial
optimization problems as QAPs, including the traveling sales-
man problem (TSP), the maximum clique problem, the linear
ordering problem, and the graph-partitioning problem, each of
them individually embracing a wide range of other applications
in industry, technology, and engineering. Featured articles on
these application domains and special cases may be found in
[10], [20], [29], [41], [67], [68], [70], [76], and [87].

Due to its solution complexity and its broad applicability,
the QAP has been the subject of extensive research in the
realms of both exact solution approaches and metaheuristic
approaches. The computational limits of existing technology
make exact approaches impractical for all but relatively small
problem instances. Metaheuristic approaches have therefore
become popular alternatives due to their superior ability to
obtain good-quality solutions within the limitations of available
computing resources.

Metaheuristic approaches applied to the QAP have
included artificial neural networks [12], simulated annealing
[19], [84], threshold accepting [59], genetic algorithms (GAs)
[18], [82], tabu search (TS) [8], [57], [77], [81], the greedy
randomized adaptive search procedure (GRASP) [48], [65],
evolution strategies [58], ant colony optimization (ACO) [28],
[51], [80], scatter search [21], and path relinking [39]. Many
variations of these approaches are present in the literature
of the QAP, e.g., [3], [22]–[24], [26], [37], [49], [55], [56],
[61], and [83]. In Section II, we survey the current most
advanced approaches for the QAP. Almost all recently suc-
cessful methods have involved hybrids of some type. The
commonality among all these approaches is the use of a local
search method, typically incorporating adaptive memory strate-
gies from TS, embedded within the proposed metaheuristic
framework. Most of the better approaches explicitly incorporate
some variation of the TS algorithm developed by Taillard [81].
Taillard’s robust TS (RTS) algorithm on its own obtains good
solutions for the QAP and is very inexpensive in terms of
computational time.

In this paper, we examine various TS strategies using the
RTS algorithm as a benchmark to demonstrate the contribution
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of these strategies. The resulting TS approaches demonstrate
that high-quality results can be obtained by simple and fast
procedures incorporating traditional TS intensification and di-
versification without requiring the complicated designs intro-
duced in more elaborate hybrid metaheuristics. Our approaches
are both efficient and easy to implement. Consequently, our
improved TS algorithms can also be easily embedded within
more complex metaheuristic procedures such as those described
in Section II. Our algorithms are shown to outperform RTS,
which is the most commonly embedded algorithm in hybrid
metaheuristics for the QAP. We demonstrate improved results
over several other algorithms considered to follow the multistart
framework from the literature, including GRASP and iterative
local search (ILS). Competitive results are also obtained against
some of the best hybrid metaheuristics for the QAP.

The remainder of this paper is organized as follows.
Section II gives an overview of solution approaches for the
QAP. Section III provides a discussion of TS and the details
of the principal components in a classical TS implementation
for the QAP. In Section IV, we present a detailed discussion of
our diversification and multistart TS variants. A discussion of
the computational results is given in Section V, followed by the
concluding remarks in Section VI.

II. QAP SOLUTION APPROACHES

The QAP was first introduced in 1957 [44], and since
then, it has been extensively studied. Sahni and Gonzales [75]
showed that the QAP is NP-complete and that no polynomial-
time heuristic can have a bounded performance ratio unless
P = NP . Queyranne [69] further extended this finding to
include cases where the distance matrix satisfied the triangle
inequality condition. The QAP remains one of the hardest com-
binatorial optimization problems and, due to its computational
complexity, has spawned decades of research in both exact and
approximation algorithms. Although significant advances have
been made in the development of exact solution methods for the
QAP, the success of these methods are still limited to solving
rather small instances of the QAP using massively parallel
computing environments that are cost prohibitive to most. Due
to these computational limitations and the inherent complexity
of the problem, the application of heuristic approaches to the
QAP has been a popular area of research for several decades.
Heuristics provide a way to obtain good but not-guaranteed-
optimal solutions to hard problems within reasonable computa-
tional times. In this section, we briefly review some successful
approaches that are most relevant to our study. We begin our
discussion in Section II-A by tracing the milestone develop-
ments in the area of exact methods for the QAP. In Section II-B,
we examine methods that may be expressly classed as multistart
algorithms. Then, Section II-C provides coverage of the leading
population-based algorithms from the literature.

A. Exact Methods

The most successful exact solution methods for the QAP
are branch-and-bound algorithms based on different bound-
ing techniques [7], [14], [30], [47]. A detailed review of
the various bounding techniques can be found in surveys by
Pardalos et al. [66] and Anstreicher [4]. The complexity of the

QAP is such that the exact solution of problems of size 20 ≤
n ≤ 30 is considered computationally nontrivial. The solution
of larger problems, where 30 ≤ n ≤ 40, usually requires the
use of massively parallel programming environments. Since the
introduction of some of the first exact solution methods for
the QAP by Lawler [47], several notable advances toward the
optimal solution of larger problem instances have occurred.

The exact solution of any QAP instances of size n = 20
was not obtained until the mid-1990s. Notably, Mautor and
Roucairol [54] presented for the first time the exact optimal
solution to the classical nug16 instance, as well as els19 and a
size-20 problem by Armour and Buffa. Clausen and Perregaard
[16] were the first to solve the classical nug20 instance to
optimality using a parallel branch-and-bound algorithm. The
solution of nug20 required approximately 960 min of computa-
tional time and 16 processors.

Using a dynamic programming algorithm, Marzetta and
Brüngger [53] solved the nug25 instance to optimality for
the first time. Their algorithm was implemented in parallel
and executed on between 64 and 128 processors of an Intel
Paragon and nine DEC Alpha processors. The solution was
obtained after 30 days of total computation time. A rather
more efficient algorithm was then developed by Anstreicher and
Brixius [5] using a convex quadratic programming relaxation
within a branch-and-bound algorithm. The algorithm was run
on a large grid computer and provided the optimal solution for
the nug25 instance after 6.7 h of wall-clock time. This would
have amounted to approximately 13 days of CPU time on the
sequential counterpart.

Hahn and Krarup [36] solved the QAP instance kra30a after
approximately 99 days of computational time on a sequential
workstation. Nystrom [60] reported the optimal solutions to
two problems of size 36 (ste36b and ste36c) using a distributed
programming environment with 22 processors. The solution
took approximately 60 and 200 days of computation time for
ste36b and ste36c, respectively.

Perhaps the most acclaimed development in the exact solu-
tion of QAP instances is due to the work of Anstreicher et al.
[6], as the authors reported the exact solution to nug30. With
the same branch-and-bound algorithm used to solve nug25 in
[5], enhanced with additional branching rules, they were able
to solve the nug27, nug28, nug30, kra30b, and tho30 instances
to optimality. The solution of nug30 took approximately seven
days to complete on a computational grid with an average of
650 computers simultaneously processing, a time that would
translate to almost seven years of computation on a single fast
computer workstation. A similar equivalence results in 15 years
of computation to solve the tho30 instance.

B. Multistart Methods

As the name implies, a multistart method is one that executes
multiple times from different initial settings. In the context
of heuristic search, a multistart can be generally described
as a method that iterates between two component methods:
1) a constructive method used to create a new starting solu-
tion and 2) an improvement method that attempts to improve
this solution by ILS. A multistart algorithm iterates between
these two component methods (or procedures) while saving
the best solution found throughout the search. In its simplest
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form, a multistart can simply be viewed as a random restart
algorithm in which a local search is iteratively run on multiple
randomly generated solutions. Multistarts may become more
sophisticated with the use of adaptive search strategies to both
construct the initial solution and guide the local search com-
ponent. Unlike random restart algorithms, adaptive multistart
methods rely on a more strategic construction of starting solu-
tions for posterior iterative improvement based on the results of
previous optimizations. See [11] for a general exposition of the
method.

As noted in [73], when a constructive process is built upon
information gathered from previous constructing iterations, it
can, without lost of generality, be interpreted as a type of
improvement method where the search for new solutions is
given by a constructive neighborhood. A constructive neigh-
borhood successively adds new components to create a new
solution, while keeping some components of the current solu-
tion fixed. These include methods that assemble components
from different solutions and methods that alter the customary
choices of the constructive process. In general, mechanisms
used to influence choices in constructive processes proceed
by changing algorithm parameters, evaluating solution compo-
nents, or restricting the selection to a specified set of elements.
Once a complete solution is obtained in a multistart algorithm,
the method switches to a type of transition neighborhood to
implement what is usually called a local search procedure,
which iteratively moves from one solution to another based
on the definition of a neighborhood structure. As we will see
later, population-based neighborhoods, commonly used in evo-
lutionary procedures, may also appear in multistart approaches.
Under these adaptive frameworks, a stand-alone constructive
process may only be used to initiate the algorithm since all
subsequent restarts derive from adaptive modifications of some
existing solutions through appropriate destructive/constructive
neighborhoods or by local perturbations generated by some
transition neighborhood.

The purpose of restarting is to drive the search into new
regions of the solution space, which may be viewed as a form
of diversification. Although in adaptive forms of multistart
methods the constructive and improvement components may be
seemingly tied together in a unified search process, it is worth
mentioning that even when perturbation mechanisms are used
to restart the search from a new diverse solution, its neighbor-
hood structure is usually different from the one considered in
the actual improvement component. Perturbation mechanisms
of this kind have proved useful in multistart algorithms for
combinatorial optimization. A prominent example is the mul-
tistart (or “iterative”) variant of the well-known Lin–Kernighan
procedure for TSP. In this setting, the so-called “double-bridge”
neighborhood is used to restart the algorithm once a local
optimum had been found—see, e.g., [17], [40], and [52].
(A similar approach has been recently applied to the maximum
clique problem in [42].)

The concept of repeatedly perturbing a solution based upon
the search history and reapplying the local search component
has been popularized in the field of metaheuristics as ILS and
clearly defines a type of multistart strategy based on perturba-
tion. See [50] for a comprehensive exposition of the method
and a survey of perturbation techniques used in a variety of
applications.

In general, the degree of perturbation is influenced by the
type of neighborhood and the number of moves applied at
each restart. A similar analog can be made to reflect the
degree of reconstruction in destructive/constructive neighbor-
hoods. Obviously, more than one alternative neighborhood can
be used alone or in combination to induce different levels
of diversification in both types of processes. A particularly
successful application of combining different neighborhoods
has recently proved effective in a local search algorithm for
job shop scheduling [72]. In this implementation, the algorithm
restarts multiple times from a diversified solution produced
by a local optimization procedure that removes a specified
number of machines (solution components) from the schedule
(solution) and constructs a new solution by iteratively reinsert-
ing the machines into the schedule.

A typical characteristic of multistart algorithms is the use of
some degree of randomization as a means to induce diversi-
fication at each restart. Random-start approaches represent an
extreme of high degree of randomization. Such an approach
may be characterized as inserting diversity into a search in an
uncontrolled manner. On the other hand, the types of adaptive
multistart approaches that make use of randomization employ
it in a controlled manner.

GRASP is one of the best known examples of an adaptive
randomized multistart algorithm. The constructive phase of
GRASP is an example of the application of a more systematic
application of randomness. A GRASP implementation for the
QAP is presented in [48]. The constructive phase of the GRASP
algorithm for the QAP creates a sorted list of elements based
on the costs of the assignments and then constructs an initial
solution by randomly selecting elements from the portion of
the list that falls within a defined percentage. Hence, this
construction phase is not completely greedy but applies a level
of controlled randomness.

As discussed in [33], improved forms of adaptive multistarts
can be achieved by drawing on principles of adaptive memory
of TS. In this manner, memory may be used to construct a
solution based on known components of previously good solu-
tions. In a similar manner, memory may be used to introduce
diversification. That is, by using memory, an initial solution
may be generated such that it is by some known degree different
from the best solution(s). Our diversified best-solution-found
TS (DivTS) algorithm in this paper follows this approach by
utilizing a diversity procedure to strategically create an initial
solution from good solutions found throughout the search. In
this way, diversity can be introduced in a controlled manner as
opposed to the use of uncontrolled randomization.

Fleurent and Glover [27] have proposed the use of memory
in a multistart TS for the QAP. They suggest the application of
the type of frequency and recency memory common in adap-
tive memory approaches to the constructive component of the
multistart algorithm. Their multistart introduced intensification
into the algorithm by using the concepts of strongly determined
and consistent variables in the construction phase. Strongly
determined variables are those elements of the solution that
cannot be removed without significantly degrading the objec-
tive function value. Consistent variables are those elements of a
solution that tend to be common across high-quality solutions.
In strategies employing these concepts, certain variables are
fixed based on search guidance. In addition to the study of
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Fleurent and Glover, Palubeckis [62] also developed a multistart
TS variant that employed these techniques to unconstrained
binary quadratic optimization. Palubeckis [62] explored several
other multistart TS variants for unconstrained binary quadratic
optimization in his study, including a random restart, a con-
structive procedure, a randomized semigreedy construction,
and a perturbation procedure. Palubeckis [63] also explored the
same type of techniques applied to the graph-coloring problem,
and Palubeckis and Krivickiene [64] explored the same type
of techniques applied to the MAX-CUT problem. All of these
variants differ in the approach taken to generate the starting
solutions and have shown good results for the problems to
which they are applied.

A more advanced variant of GRASP enhanced by a TS
path-relinking strategy is introduced in [61] for the QAP. This
algorithm is similar to the GRASP algorithm of Li et al. [48]
mentioned above, except that it modifies the improvement
procedure of the algorithm by exploring search paths between
solutions using transition neighborhoods in a path-relinking
fashion.

Misevicius [57] also introduced several multistart TS variants
(ETS1, ETS2, and ETS3) for the QAP. These algorithms sim-
ply apply a modified RTS procedure of Taillard’s algorithms
[81] to solutions that are periodically subjected to mutations
(i.e., perturbations). Taillard’s RTS algorithm was amended to
exclude the aspiration criteria, decrease the tabu tenure, and
simplify the tabu condition. Several diversifying perturbation
schemes were incorporated into these algorithms, including
a random pairwise exchange procedure, a shift procedure, a
dichotomic mutation (exchanging halves of the permutation),
and a neighbor exchange mutation (exchanging two adjacent
assignments). The variants test various combinations of these
operators. Misevicius’s approach can be viewed as a multistart
TS using a variety of diversification operators. The layering to
these TSs are more complicated than those in this paper, as
often, several levels of restarting occur with multiple diversi-
fication operators.

Stützle [79] examined several ILS algorithms for the QAP.
All of his variants used a simple two-opt local search and
perturb the solution using random pairwise exchanges. To
determine a solution from which to restart the search, several
options were considered. In the traditional ILS variant, the
best solution, which may or may not be the working solution
obtained by the current run of the local search, is perturbed, and
then, a local search is applied (ILS1). In the second version, a
random restart (ILS2) was employed, which straightforwardly
replaces the working solution with a random permutation. The
third variant always perturbs the working solution obtained
from the local search (ILS3). The fourth variant allows worse
solutions based upon a probability, which are then perturbed,
and the local search is restarted (ILS4).

ACO may also be considered a multistart algorithm. Like
GRASP, ACO uses a probabilistic construction phase but dif-
fers by using the search history to influence it. The premise
of ACO algorithms is that as a search occurs and good so-
lutions are found, more of the ants will take similar paths
(that is, locate elements in the same position). The collection
of this search information is stored in memory and called
the pheromone trail. ACO constructively builds solutions by
choosing an assignment influenced by the pheromone trail.

A local search is then applied to the constructed solution.
Several ACO algorithms for the QAP are given by Stützle
and Dorigo [80]. The first variant modifies the construction
phase to use the pheromone trail to modify the current solution
rather than construct a new one (ACO1). The next two variants
use a typical ACO construction phase, but ACO2 applies a
two-opt local search, whereas ACO3 uses RTS as its local
search.

Another type of multistart appears in some variants of the
relaxation adaptive memory programming (RAMP) approach
[71]. Here, restarts occur in the dual space of a relaxation of the
original problem whose solutions provide starting points for the
construction of primal feasible solutions (i.e., solutions that are
feasible to the original problem). Once a solution is constructed,
a local search is then applied to find enhanced solutions. The
method alternates between the primal (improvement) and the
dual (constructive) procedures while maintaining appropriate
memory structures that affect both the primal and the dual
searches. Simple variants of RAMP keep track of the best
solution found during the search; however, more advanced
variants maintain a reference set of high-quality and diverse
solutions, which may be combined in an evolutionary fashion to
generate new enhanced solutions. This more advanced setting
is an example of using population-based neighborhoods within
a multistart approach. Although relatively new, the RAMP
method has already proved very effective in solving a number
of combinatorial optimization problems, which include set cov-
ering, facility location, linear ordering, generalized assignment,
and network design.

This is by no means an exhaustive list of possible adaptive
memory strategies that may be employed in a multistart al-
gorithm. For further uses of adaptive memory strategies and
their use in restarted algorithms, see, for example, [1], [9], [34],
and [45].

C. Leading Population-Based Methods for the QAP

A number of the recent metaheuristic solution techniques
consist of GA variants coupled with TS. Misevicius proposed
two GA approaches joined with TS for the QAP, a GA hy-
bridized with a “ruin-and-recreate” procedure (GA/TS) [55]
and an improved hybrid GA (GA/TS/I) utilizing a “shift muta-
tion operator” [56]. Both of these approaches are superimposed
on a modified version of Taillard’s TS, which is used to execute
the key function of improving the solutions provided by the
GA operators. The ruin-and-recreate procedure uses an operator
to randomly perturb the solutions provided by the GA. The
TS procedure is then applied as an operator to “recreate”
solutions provided by the GA operators, as well as the “ruined”
solutions created by the perturbations [55]. The more advanced
hybrid GA version of this approach adds a “shift mutation”
operator that further perturbs selected solutions to create greater
diversification [56].

Two other hybrid GA approaches are given by Drezner [23],
[24], which similarly incorporate several TS variations within
a modified GA framework. Drezner [23] examines the use of
a descent heuristic (GA/SD), a simple TS (GA-S/TS), and a
new “concentric” TS procedure (GA-C/TS), which identifies
and evaluates candidate moves based upon their distance from
a “center” solution. Drezner [24] incorporates an extension of
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the concentric TS approach (GA-IC/TS) that considers a larger
number of permissible moves.

A population-based path-relinking approach using Taillard’s
RTS procedure as an improvement method is introduced and
studied in [39]. Recently, a hybrid metaheuristic approach
combining ACO with a GA and local search (ACO-GA/LS) has
been proposed by Tseng and Liang [83]. Stützle [79] presents
several population-based variants of ILS (ILS5, ILS6, and
I-ILS6). These algorithms maintain a population of solutions
and use ILS to operate on the population. The third variant,
I-ILS6, uses an improved local search from all the previous ILS
algorithms discussed.

Due to differences in the QAP test sets chosen for testing,
direct comparisons of the techniques outlined above are dif-
ficult. This makes the designation of a “best” metaheuristic
impossible. The best performing algorithms from the litera-
ture typically provide computational results for different test
instances from QAPLIB/Taillard’s repository. The hybrid GAs
introduced by Misevicius [55], [56] and the TS variants [57]
produce some of the best solutions for the Taillard test sets,
but they are not run on any other test instances. The hybrid
GA of Drezner [24] produces the best quality solutions for
the Skorin–Kapov test suite. No results are presented for the
Taillard test instances for Drezner’s algorithms.

Although this is not an exhaustive list of approaches for
the QAP, the algorithms discussed constitute many of the best
performing approaches found in the current literature. As noted,
all utilize some variation of a local search procedure, typically
either Taillard’s RTS procedure or a modification of it. As
RTS is often a component of more complex metaheuristics, the
development of a multistart TS variant that would provide better
solution quality than RTS in similar runtimes is the goal of
this paper.

III. TS FOR THE QAP

The hallmark of TS is the use of adaptive memory to guide
the exploration of the search space. Basic (rudimentary) TS
procedures make use of short-term memory to exclude consid-
eration of moves that lead back to recently visited solutions,
together with one or more aspiration criteria that override the
tabu status of moves that have suitably attractive properties.
More advanced TS procedures incorporate additional short-
term and longer term memory structures, including those based
on frequency and on logical analysis. Accompanying these
memory structures are intensification and diversification strate-
gies, which, respectively, focus the search in regions previously
found to contain good solutions and drive the search into
promising new regions not previously visited.

It is well known that the design of appropriate intensification
and diversification strategies is essential to achieve high levels
of performance in local search algorithms. There are many
different ways to design and implement these strategies in TS,
and their use typically depends on the application. In general,
the first level of intensification and diversification is achieved
by changing the tabu list size. Small sizes encourage the ex-
ploration of solutions near a local optimum, and larger sizes
push the search out of the vicinity of the local optimum. Varying
the tabu list size during the search provides one way to explore
the effect of tabu list size, and this approach has proved useful

in a number of TS applications. Advanced forms of short-term
memory may consider various types of tabu restrictions associ-
ated with several aspiration criteria, which may be used to make
a decision about the acceptance of the tabu status of a particular
move. Taillard’s RTS algorithm [81] considered in this paper
is a classical example of an effective TS short-term memory
algorithm using multiple levels of aspiration criteria. Although
in some cases, the use of short-term memory may be sufficient
to produce high-quality solutions, many studies have shown that
versions of TS that include longer term memory components
generally prove superior to more limited versions (e.g., [25],
[38], [43], [46], and [78]). The literature in TS abounds with
algorithms exploring intensification and diversification through
a variety of long-term memory structures and strategies ap-
plied to numerous problem settings. (A simple Google Scholar
search returns over 1000 articles on TS containing the exact
phrase “long term memory.”) These strategies can range from
relatively simple to very intricate designs, depending on the
application and the type of implementation chosen to explore
possible tradeoffs between ease of implementation and sophis-
tication of the search.

The most commonly used long-term memory keeps track of
the frequency of components of solutions (or move attributes)
that occur in high-quality (or elite) solutions or that have been
involved in selected moves. As part of a longer term intensi-
fication strategy, the elements of a solution may be judiciously
selected to be provisionally locked into the solution on the basis
of having occurred with high frequency in the best solutions
found. Conversely, diversification strategies typically penalize
such highest frequency elements so that the search can move
into previously unexplored regions of the solution space (see
[34] for a detailed explanation of various forms and uses of
memory within TS processes).

Although intensification and diversification are equally im-
portant components in finding the best solutions, the design
of an effective diversification strategy is usually a significantly
more complex task. Whereas intensification restricts the search
to regions containing attributes that are known to be part of
high-quality solutions, diversification is concerned with discov-
ering new regions of potentially good solutions in a vastly larger
search space of unknown characteristics.

Diversification techniques generally fall into two main cat-
egories. The first, called continuous diversification, alters
the regular search trajectory by perturbing the current search
parameters or by biasing the evaluation of possible moves.
The second, called discontinuous diversification, strategically
replaces the current working solution with a different solution,
using it as a new starting point to continue the search. TS
strategies that combine solution attributes (e.g., by hash func-
tions [86], chunking [85], or vocabulary building methods [35])
or complete solutions (e.g., by path relinking [31]) to create
other solutions that are used as starting points to generate
other solutions may be viewed as discontinuous diversifica-
tion approaches. Moreover, when the construction of the new
solutions produced by these or other TS strategies alternate
with the improvement of all or some of the newly created
solutions, such approaches fall into a special type of adaptive
multistart methods generally called multistart TS methods, as
defined in Section II-B. The path-relinking implementation of
James et al. [39] is an example of such multistart TS strategy.
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For the purpose of this paper, we focus primarily on the
simple TS strategies, utilizing intensification and diversification
processes that are straightforward and easy to implement.

The RTS algorithm developed by Taillard [81] provides a
core TS method that itself embodies simple components and
that has been shown to provide high-quality solutions to the
QAP with a small expenditure of solution time. As in the case
of many of the other leading QAP methods, our current study
incorporates many of the design features of the RTS algorithm.
We also use this method as a benchmark for evaluating the con-
tribution of various diversification and multistart TS procedures
we have developed. The remainder of this section describes the
basic components of our approaches.

A. Neighborhood Specification

The neighborhood most commonly employed in local search
algorithms for the QAP, including RTS and the multistart
methods presented in this paper, is the classical two-exchange
(or swap) neighborhood.

To illustrate, consider the following permutation:

p = (3, 12, 1, 5, 8, 7, 2, 9, 4, 10, 6, 11).

It is convenient to view each location in the permutation
as representing a facility. Entries in the permutation therefore
represent the assigned location of each facility. The above
permutation therefore represents the assignment of facility 1 to
location 3, facility 2 to location 12, and so on. It is straightfor-
ward to reverse this encoding.

A move in the two-exchange neighborhood consists of ex-
changing (or swapping) two locations. For example, a move
denoted by (5, 9) results in the following permutation:

p′ = (3, 12, 1, 9, 8, 7, 2, 5, 4, 10, 6, 11).

The new solution now assigns facility 4 to location 9 and
facility 8 to location 5. The neighborhood thus constitutes the
set of all possible moves of this type.

Other encodings and neighborhoods (such as k-exchange
neighborhoods) have also been considered in the literature,
but the computational burden of the larger exchange neigh-
borhoods (k > 2) has limited their use. Exceptions are the
very-large-scale-neighborhood search procedures [2] and ad-
vanced neighborhood constructions derived from ejection chain
methods [74].

In the case of the simple two-swap neighborhood selected
here, the value of each possible new permutation created by a
swap move could simply be calculated based on the objective
function given in Section I. However, as the size of the problem
grows, such an explicit calculation becomes expensive. One
of the key elements of Taillard’s RTS is a procedure that
quickly ascertains the impact of the two-exchange moves on
a given permutation, thereby saving computational cost, as we
examine next.

B. Computation and Update of Solution Cost Changes

To expedite the evaluation of a two-exchange move, the RTS
algorithm utilizes a matrix to store the cost associated with
each swap that may be executed in the current permutation.

These “partial costs” can then be added to the original cost
of the permutation to obtain the value associated with the new
permutation. In this manner, the costs of possible moves can be
quickly evaluated, and once a move is chosen, the matrix can be
efficiently updated to reflect the costs associated with the newly
formed permutation. Let the triplet (p, r, s) define a move that
swaps the elements r and s in a permutation p; the partial costs
associated with the move, for symmetrical QAP instances, can
be calculated by

Δ(p, r, s) = 2
∑

k �=r,s

(fsk − frk)
(
dp(s)p(k) − dp(r)p(k)

)
. (2)

Let us consider an example for the symmetric case. Suppose
d and f are given as

d =

⎡
⎢⎣

10 3 8 4
3 10 6 1
8 6 10 9
4 1 9 10

⎤
⎥⎦ f =

⎡
⎢⎣

2 4 1 7
4 2 3 5
1 3 2 7
7 5 7 2

⎤
⎥⎦ .

For illustration purposes, we choose an arbitrary permutation
p = (2, 1, 3, 4) and calculate the objective function z(p) = 344
using (1).

Using permutation p, we can calculate the partial cost ma-
trix Δ. For each off-diagonal value in Δ, Δ(p, r, s) denotes
the change in cost of performing the exchange (r, s) on p.
Therefore, in our example, the off-diagonal elements in Δ are
calculated using (2) as follows:

Δ(p, 1, 2)= 2×((8−6)×(1−3)+(4−1)×(7−5))=4

Δ(p, 1, 3)= 2×((3−6)×(1−4)+(4−9)×(7−5))=−2

Δ(p, 1, 4)= 2×((3−1)×(7−4)+(8−9)×(7−3))=4

Δ(p, 2, 3)= 2×((3−8)×(3−4)+(1−9)×(7−7))=10

Δ(p, 2, 4) = 2×((3−4)×(5−4)+(6−9)×(7−1))=−38

Δ(p, 3, 4)= 2×((8−4)×(5−3)+(6−1)×(7−1))=76

which results in the following partial cost matrix:

Δ =

⎡
⎢⎣

4 −2 4
4 10 −38
−2 10 76
4 −38 76

⎤
⎥⎦ .

Considering the partial cost matrix Δ, the best exchange on p
is (2, 4), resulting in the following permutation t = (2, 4, 3, 1)
and objective function z(t) = 344 − 38 = 306.

Once a move (r, s) is chosen, it is then possible to update the
move cost matrix for symmetrical instances by the function

Δ(t, u, v)=Δ(p, u, v)+2(fru−frv+fsv−fsu)

×
(
dt(s)t(u)−dt(s)t(v)+dt(r)t(v)−dt(r)t(u)

)
(3)

where t is the new permutation, and u and v differ from r and s.
If u or v is the same as r or s, then (2) can be used to compute
the cost (see [81] for a more detailed discussion of these costs
and [13] for a discussion of asymmetrical cases).
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Continuing the previous example, to update the partial cost
matrix Δ using (2) when u or v is the same as r or s and (3)
otherwise, assuming that we made the exchange (2, 4)

Δ(t, 1, 2)= 2×((8−6)×(7−3)+(4−1)×(7−4))=34

Δ(t, 1, 3)= −2+(2×((3−6+9−4)×(4−1+7−5)))=18

Δ(t, 1, 4)= 2×((3−1)×(7−5)+(8−9)×(1−3))=12

Δ(t, 2, 3)= 2×((3−8)×(3−5)+(1−9)×(1−7))=116

Δ(t, 2, 4)= 2×((3−4)×(4−5)+(6−9)×(1−7))=38

Δ(t, 3, 4)= 2×((8−4)×(4−3)+(6−1)×(7−7))=8.

As can be seen above, (3) is only used for Δ(t, 1, 3) since in
our small example, this is the only case where the condition is
not violated. In other words, in all the other cases, either u or
v is equal to either 2 or 4. As the problem size grows, it can be
seen that (3) will be more frequently used. The new partial cost
matrix becomes

Δ =

⎡
⎢⎣

34 18 12
34 116 38
18 116 8
12 38 8

⎤
⎥⎦ .

For every exchange performed, the partial cost matrix Δ
is updated as demonstrated using permutation t. The process
restarts from the beginning for an entirely new permutation.

C. Tabu List

The tabu list to carry out a short-term memory function
maintains a record of previously accepted moves by assigning
these moves a tabu tenure that denotes the length of time
(typically in iterations) during which the elements of a previous
move are considered “tabu” and, hence, a move consisting of
such elements is forbidden. In this paper, we adopt the rules
for designating an exchange tabu utilized in the RTS algorithm.
However, our variants change the basic structure of the algo-
rithm, as will be discussed in later sections. Modifications to
the maintenance of the tabu list matrix are performed in our
algorithms, which result in a tabu list with a different structure
than that in RTS.

To determine the tabu status, we maintain a matrix of tabu
tenures for each element, starting from a tabu tenure matrix
in which all moves are permissible. Once a move is accepted,
an updated tabu tenure is assigned to both elements of the
exchange and stored in the matrix. This updated tenure results
from adding a random number from a defined range to the
iteration count, making the associated elements tabu for a
specified number of iterations beyond the current iteration. The
tabu condition prevents a move from being executed only if
both elements of the exchange are currently tabu.

D. Aspiration Criteria

An aspiration criterion is a rule that allows the tabu status to
be overridden in cases where the forbidden exchange exhibits
desirable properties. The aspiration criteria incorporated into all

Fig. 1. TS framework.

variants developed in this paper are the same as those used in
the RTS algorithm.

The aspiration criteria utilized in this paper require a tabu
move to successfully pass through a series of three levels of
criteria to ultimately become a permissible exchange. The first
level necessitates that an exchange meet one of two criteria.
The first determines if the forbidden move results in a global
best solution. The second establishes whether the tabu tenure
of at least one of the two elements of the exchange is less than
a predefined ceiling (the iteration minus a defined aspiration
value). If the forbidden move meets either requirement, then it
is marked as potentially admissible and is subject to the second-
level criterion.

The second-level criterion determines if the tabu exchange
under consideration is the first forbidden move examined in the
current iteration of the algorithm. If the exchange is the first
move to override the tabu status for the current working permu-
tation, then the move is permitted. Otherwise, the exchange is
subjected to one final criterion.

The third-level criterion determines the quality of the ex-
change in relation to the cost of the previous exchanges exam-
ined during the current iteration. This comparison examines the
move (or partial) cost rather than the objective function value of
the permutation after the exchange. If the cost of the forbidden
exchange is better than all of the previous exchanges examined
on the current working solution, the move becomes permissible.

E. Traditional TS Algorithm

The outline of a traditional TS algorithm is provided in Fig. 1.
The outer loop of Fig. 1 determines the number of iterations
the algorithm is allowed before execution ceases (the stopping
condition). The stopping condition applied in a traditional
TS may be based on the solution quality, execution time, or
iterations. The stopping condition utilized in all variations of
the TS algorithms in this paper, including the RTS used for
comparisons, is to stop the execution of the algorithm after
the global best solution is not updated for a defined number of
iterations. In the original RTS algorithm, the stopping condition
was a defined number of iterations regardless of improvement.
In this paper, it was modified in the original RTS to allow for
valid comparisons with the proposed multistart variants.

The main logic of the algorithm begins by setting the work-
ing solution to a randomly drawn permutation and calculating
the partial cost matrix for this permutation. All possible swaps
are considered, and the best non-tabu or aspired move is ac-
cepted. The chosen move is not necessarily globally improving,
but that move is still made on the working solution. If the
permutation resulting from the move is globally improving, the
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global best solution is appropriately updated. After an exchange
is chosen, the tabu tenure for each element of the accepted
exchange is updated. The partial cost matrix for the permutation
is also appropriately updated to reflect the exchange made on
the old working solution, and the algorithm repeats by choosing
the next desired exchange on the new working solution.

If the components described in the previous sections are
inserted into the skeleton in Fig. 1, the resulting algorithm is
an RTS with a modified stopping condition. The diversification
and multistart variants developed in this paper change the
structure of this skeleton and will be discussed in depth in the
following sections.

IV. DIVERSIFICATION AND MULTISTART TS STRATEGIES

The algorithm skeleton provided in Fig. 1 assumes that the
algorithm is seeded with one initial permutation and continu-
ously modifies the current permutation until a stopping criterion
is met. A multistart approach extends this traditional design by
adjusting the search strategy to modify the standard search path.
A continuous diversification can be obtained by strategically
changing the current parameter settings while continuing the
search from the current working solution. Conversely, a discon-
tinuous diversification strategy consists of restarting the search
from a solution that somewhat differs from the current working
solution. This may consist of going back to a previously visited
solution to explore a different search trajectory or creating a
new solution to restart the search.

As discussed earlier, the type of procedures that discontinue
the current search trajectory by employing some degree of
reconstruction of the solution structure or explicit perturbation
are generally called multistart approaches. In this paper, we ex-
plore discontinuous diversification strategies that both change
the trajectory from a previously visited solution and create a
new working solution, as well as continuous diversification
strategies.

Accordingly, the TS variants developed in this paper can be
separated into two categories. The first category implements a
continuous diversification TS process and contains variants that
perturb the search by modifying some algorithm parameters
but continue the exploration from the same working solution.
By modifying the parameters, the permissible exchanges for
subsequent iterations of the algorithm are altered, allowing for
the possibility that the algorithm proceeds on a different search
trajectory than that of the traditional TS. Since these variants
continue from the same working solution, they do not alter the
position in the search space from which the search continues.
The restricted-descent TS (RDTS) and the tabu tenure mod-
ification TS (TTMTS) both fall into this category, where the
alteration of the tabu list matrix and the tabu tenure parameters
is explored. The tabu list matrix contains the current tabu status
of the elements that establish whether an exchange is forbidden.
The tabu tenure parameters designate the range of values from
which the tabu tenure for an element is chosen. The value (tabu
tenure) drawn from this range determines the length of time an
exchange is forbidden. These parameters may also impact the
aspiration criteria. As mentioned previously, a solution passes a
first-level aspiration test if the tabu status of one of the elements
of an exchange is less than a defined ceiling. The aspiration
value parameter is not modified in the algorithms.

Fig. 2. Diversification and multistart TS framework.

The second category implements a discontinuous diversifica-
tion TS process and contains the random-restart TS (RRTS), the
best-solution-found TS (BSFTS), and DivTS. In these variants,
the parameter modifications are combined with the replacement
of the working solution by some other permutation. The new
starting solution replaces the current working solution in these
algorithms and is a randomly drawn solution, the global best
solution, or a diversified version of the global best solution,
respectively. Although all these variants preserve the global best
solution found, they differ with respect to how they use the
previous search history to proceed. The restart that occurs in the
RRTS variant is identical to starting a new TS with modified
tabu tenure range parameters, except that the best solution
found is still retained for comparison. The other two variants
replace the current working solution with a previously visited
solution or a variation of such a solution that is already known
to be favorable, thus utilizing information from the previous
iterations of the search.

The addition of a diversification component changes the
structure of the algorithm presented in Fig. 1 by forcefully
altering the search trajectory in some manner when an un-
desirable amount of stagnation occurs. Each variant follows
the skeleton given in Fig. 2 and differs only in the type of
diversification applied. The diversification process that occurs
when the allowable failure threshold is reached for each of the
five variants will be detailed in the following sections.

A. RDTS Approach

This TS variant implements a continuous diversification
approach simply by modifying the tabu tenure parameter. As
the search begins to stagnate (the allowable failure condition
in Fig. 2 is met), the current tabu status of all elements is
released by resetting the tabu list matrix to once again allow all
possible moves from the current working solution. The tabu list
is then rebuilt as subsequent moves are made, and the algorithm
continues to iterate until either the allowable failure condition is
met again or the stopping condition is reached. In this manner,
a restricted descent from the current working solution occurs
at the diversification stage since a greedier move selection is
allowed initially as the tabu list matrix is being recreated.

In the RDTS variant, the tabu tenure parameters are defined
as in RTS and left constant throughout the entire run of the
algorithm. The diversification applied in this variant is only in
terms of a parameter adjustment; the current working solution is
not replaced. The intention of this variant is to gauge the impact
of releasing the tabu list to benchmark the more sophisticated
modifications.
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B. TTMTS Approach

The TTMTS variant takes the previous continuous diversi-
fication approach one step further. As in the previous variant
(RDTS), the tabu list is released (cleared). The TTMTS variant
then additionally modifies the tabu tenure parameters. The tabu
tenure for an exchanged element is drawn from a defined range,
added to the current iteration count, and subsequently stored in
the tabu list matrix. To obtain the tabu tenure of an element,
an upper value and a lower value are required to determine
the range. Both values are dependent on the size of the QAP
instance being examined. However, in the RTS algorithm, these
values were kept constant, and for a particular instance, the
range did not change over the run of the algorithm.

In the TTMTS variant, when the allowable failure condition
is reached, not only is the tabu list released, but also new upper
and lower values to determine the tabu tenure range are chosen.
At each diversification stage, therefore, it is possible that the
range of tabu tenure values can tighten or loosen. This could
result in the tabu status of elements expiring closer together
for subsequent iterations of the algorithm. It may also result
in a larger divergence in the length of time elements are tabu.
The range values may increase or decrease from the previous
settings. This means that the length of the tabu tenure of all
exchanged elements may correspondingly increase or decrease
for subsequent iterations of the algorithm. This parameter mod-
ification changes the set of permissible moves as the algorithm
continues from each diversification stage. Similar to the tabu list
parameter modification, this may change the search trajectory.

Again, the current working solution in this variant is not
replaced, the search continues from the same working solu-
tion obtained from the iteration previous to the diversification
stage.

C. RRTS Approach

The RRTS variant implements a discontinuous diversifica-
tion strategy by multistart. The algorithm restarts the search
from a randomly drawn permutation with new tabu tenure pa-
rameters and a released tabu list. It restarts when the algorithm
stagnates and saves only the global best solution. This approach
is similar to running a traditional TS algorithm, with new tabu
tenure parameters for each search phase, but runs several times
for a shorter number of iterations.

As in the TTMTS variant, the RRTS algorithm restarts under
the new tabu tenure parameters and a released tabu list but
does not restart from the current working solution. Rather, the
current working solution is replaced with a randomly drawn
permutation generated in the same manner as the initial working
solution. The only information saved from the previous itera-
tions of the search is the global best solution. However, this
previous search information may impact the aspiration criteria
since a permutation created from a move may be less likely to
improve upon the global best solution.

D. BSFTS Restart Approach

As in the previous two variants, the same modifications to
the tabu list matrix and the tabu tenure parameters are made
in the BSFTS variant. The difference in this discontinuous
diversification variant is that the working solution from which

Fig. 3. Pseudocode for the diversification method.

the algorithm continues after the restart is the best solution
found up to that point in the search. This allows for a restricted
descent from the global best solution under new tabu tenure
parameters. In this case, the idea is to capitalize on the best
information currently available and perturb the search from this
region with the adjustment of the tabu tenure parameters. This
intensifies the search, in a simple manner, as it forces the search
to restart from an already-promising region.

E. DivTS Restart Approach

The DivTS variant also releases the tabu list and modifies
the tabu tenure parameters in the same manner as above. The
DivTS discontinuous diversification variant again differs in the
replacement of the current working solution at the restart. This
variant perturbs the search trajectory by replacing the current
working solution with a strategically diversified permutation
created from the global best solution found up to the restart
condition being met.

This new working solution may greatly differ from the
current global best solution and the current working solution,
but it is not randomly generated as in the RRTS variant.
The DivTS approach forcefully diversifies the search but in a
more tactical manner than a random restart. The diversification
procedure used provides a certain level of assured variability in
the solution from which the algorithm is restarted. The method
used to create the new working solution from the current best
known solution (BKS) is described in the following section.

Diversification Procedure: The diversification procedure
used in DivTS is suggested by Glover [31]. The pseudocode
for this procedure is given in Fig. 3. The method generates new
starting solutions from a randomly generated seed solution in
the manner illustrated below.

Suppose that a randomly generated permutation such as s is
given, where s(1), . . . , s(n) are the locations to which facilities
1, . . . , n are assigned

s = (8, 1, 5, 10, 9, 3, 7, 2, 12, 11, 6, 4).

A step is defined that determines the increment used to step
through the elements of the permutation. The step is also used
to initialize the starting position (the start variable in Fig. 3).
For example, if step = 3, then through the first pass of the inner
loop, start = 3, which results in the partial solution

ss = (5, 3, 12, 4).

The starting position is then readjusted to start = 2, generat-
ing in the next pass of the inner loop

ss = (5, 3, 12, 4, 1, 9, 2, 6).
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TABLE I
TS VARIANT PARAMETER SETTINGS

This process is continued until start = 1, in which case a full
starting solution is generated

ss = (5, 3, 12, 4, 1, 9, 2, 6, 8, 10, 7, 11).

This method can be used to generate 1 to n solutions
from any given permutation, where n is the number of lo-
cations/facilities in the problem instance. The first solution
produced is simply the original seed solution. In the DivTS
variant, the step size starts at 1 and is increased by 1 at each
restart until it equals the problem size and then, if necessary, is
reset to 1. Therefore, at the first restart of DivTS, the current
working solution is replaced with the global best solution, and
at each subsequent restart, a diversified version of the global
best solution is utilized.

V. COMPUTATIONAL RESULTS AND DISCUSSION

For computational testing, a set of 126 test problems obtained
from QAPLIB (http://www.seas.upenn.edu/qaplib/inst.html)
and Taillard’s repository (http://mistic.heig-vd.ch/taillard/
problemes.dir/qap.dir/qap.html) were used. All of the TS vari-
ants proposed in this paper and the RTS algorithm were written
in C and run on a single Intel Itanium processor (1.3 GHz).
The machine used was an SGI Altix running Linux and the
Intel compilers. Each algorithm was run ten times, starting
from ten different randomly generated seed solutions (initial
working solutions).

A. Computational Analysis of the Variants

To determine the best TS algorithms, we tested our five
variants against RTS on a subset of the test instances. The
most widely used 31 instances were chosen as a representative
set of diverse and difficult instances in the standard testbed.
The Skorin–Kapov instances and the Taillard instances are the
most common instances utilized for computational testing in
recent studies. Furthermore, these two test sets contain a greater
number of large instances, and obtaining the BKS often proves
more elusive for these two test sets. The best variant found
in this analysis was then run on the remaining 95 instances,
and comparisons to algorithms from the literature are given in
Section V-B.

The parameters for each variation are shown in Table I. The
stopping condition was set to 50 000∗n (n being the problem
size or number of facilities/locations for the problem). The
RTS procedure was written identically to Taillard’s algorithm

with the exception of the stopping criterion. The stopping
criterion was changed from a fixed number of iterations to
a maximum number of failures rule to provide valid com-
parisons between RTS and the diversification and multistart
variants.

The allowable failure limits define a range from which the
number of iterations, in which no improving move is found
before the diversification is applied, is chosen. An initial num-
ber of iterations are chosen from this range at the beginning of
the algorithm, and in each diversification stage, a new value is
chosen. The upper limit of this range is set to be less than the
maximum failure parameter.

The tabu tenure range parameters used by the RTS algorithm
are 9∗n/10 and 11∗n/10. The initial values of the lower and
upper tabu tenure range parameters for all variants were also
set to these values. All TS variants, with the exception of
the RDTS variant, modified these parameter values during the
diversification phase. The new tabu tenure range parameters,
during the diversification stage only, were drawn from the range
of values given in Table I. The upper and lower tabu tenure
values are chosen randomly from this range, with the only
constraint being that the upper value must be larger than the
lower value. The aspiration value employed in RTS was used
for all variants.

Table II provides a comparison of all the variants, as well
as the RTS algorithm. The average percent deviation (APD)
from the BKS is given for each algorithm, as well as the
number of times the BKS was found out of the ten runs (in
parentheses) and the average time to completion. All times are
in minutes. The best overall average deviation for each test
problem is bolded. An asterisk denotes that the variant did as
well as or better than the RTS algorithm. The averages over
all problems for each variant and RTS are also provided in the
last row.

As can be seen in Table II, all five variants outperformed
RTS. The worst variant, RDTS, still obtained solution quality
as good as or better than RTS on 25 of the 31 test instances.
TTMTS and RRTS tied with or outperformed RTS on 29 of
the 31 problems. The best two variants, BSFTS and DivTS, did
better than or as well as RTS on 30 of the 31 test instances. The
averages over all test instances are: 0.165 for RTS, 0.154 for
RDTS, 0.120 for TTMTS, 0.124 for RRTS, 0.119 for BSFTS,
and 0.112 for DivTS. All five proposed TS variants obtain
better average solution quality than RTS. The running times
of all algorithms are very similar across all test instances. On
the average, these times range from 39.31 (for RTS) to 46.93
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TABLE II
COMPARATIVE ANALYSIS BETWEEN TS VARIANTS AND RTS

(for TTMTS). The average for the most effective algorithm
across the board (DivTS) is 44.86 s.

Out of the continuous diversification category of TS variants,
TTMTS is the best, outperforming RDTS on 18 of the test
instances. Of the remaining 13 instances, TTMTS and RDTS
tied on 11, and RDTS won only on two. TTMTS (0.120)
had a better overall average than RDTS (0.154). Furthermore,
TTMTS found 150 BKSs whereas RDTS found only 119.
TTMTS obtained the best overall solution to 15 instances,
and RDTS obtained the best overall solution to 11 instances.
It is interesting to note that TTMTS performed quite well
for a simple TS, obtaining the unique overall solution to one
instance (Tai50a). It even outperformed the RRTS variant from
the second category in overall average solution quality: 0.120
(TTMTS) to 0.124 (RRTS).

In the discontinuous diversification category, DivTS was the
best performing algorithm. DivTS outperformed RRTS on 12
of the 31 test instances and tied on 13. RRTS outperformed
DivTS on the remaining six instances. DivTS outperformed
BSFTS on 12 instances and tied on 14. BSFTS obtained better
solution quality on five instances. DivTS outperformed both
RRTS and BSFTS in overall average solution quality: DivTS
(0.112), BSFTS (0.119), and RRTS (0.124). RRTS obtained one
more BKS than DivTS: 155 to 154. BSFTS obtained 151 BKSs,
slightly less than the other two variants. DivTS obtained the best
overall solution to 22 instances versus RRTS’s 16 instances and
BSFTS’s 18 instances. DivTS obtained the most unique overall
best APDs, i.e., on eight instances (Tai35a, Tai40a, Tai60a,
Tai80a, Tai100a, Sko72, Sko81, and Sko100c). BSFTS ob-
tained unique overall best solutions for four instances: Sko90,
Sko100a, Sko100d, and Sko100f. RRTS obtained unique over-
all best solutions for three instances: Sko49, Sko100b, and
Sko100e.

All but one of the unique overall best solutions was found
by the variants in the second category. Overall, the variants
in the second category performed better than those in the first
category, with the previously noted exception that TTMTS
obtained a better average than RRTS over all instances. All of
our TS variants are shown to outperform RTS. The times for
all algorithms are similar. Of interest is that our TS variants do
not significantly increase the runtimes yet improve the solution
quality.

The main purpose of this paper was to identify a TS variant
that would provide better performance than the widely used
RTS algorithm. All five variants proposed in this paper are
shown to outperform RTS. Second, we want to identify the most
successful TS variant among those proposed. DivTS is clearly
the overall winner, as it significantly outperforms RTS and the
other variants. It outperforms its closest two competitors by
more than double the number of instances. The average over all
31 instances is lower than all other variants, and it finds double
the number of best overall unique APDs of the other variants.

B. Extended Computational Analysis

We took the best variant, DivTS, and extended the test set
to include 95 additional instances obtained from both QAPLIB
and the problem instances maintained by Taillard. This test set
comprises almost all classical QAP instances and allows for ad-
ditional comparisons of our best multistart TS to the algorithms
from the literature. In particular, we are able to compare our
performance to GRASP, ACO, and ILS approaches, which are
similar in nature to the multistart TS algorithm. Comparisons to
several of the best more complex metaheuristics from the liter-
ature are also given. To clearly demonstrate the performance of
our algorithm on the different types of instances, we adopt the
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TABLE III
LONGER RUN RESULTS FOR DivTS (PROBLEM TYPES 1 AND 2)

TABLE IV
LONG-RUN DivTS RESULTS CONTINUED (PROBLEM TYPES 3 AND 4)

problem classification given by Stützle [79]. This classification
groups the QAP instances into four categories.

1) Unstructured, randomly generated: This group contains
instances in which the distance matrix was randomly
generated based on a uniform distribution.

2) Grid-based distance matrix: This group contains in-
stances in which the distances are the Manhattan distance
between points on a grid.

3) Real-life instances: These instances are obtained from
real-life QAP applications.

4) Real-life-like instances: These instances were generated
to appear similar to real-life problems.

Tables III and IV present the results of the DivTS algorithm
on all 126 instances by category. The results in Tables III and IV
are divided by the classification given above into four groups.
For each group, the table contains the instance name, the BKS
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TABLE V
LONGER RUN DivTS COMPARISONS WITH THE LITERATURE FOR TYPE-1 PROBLEMS

for the instance, the APD over ten runs of the algorithm (the
number of times the BKS was found is given in parentheses),
the best percent deviation (BPD) out of the ten runs, and the
average solution times in minutes. Categories 1 and 2 are given
in Table III, and categories 3 and 4 are given in Table IV. The
averages over each category of instances are provided at the
bottom of each table.

The results presented in Tables III and IV show that DivTS
obtains high-quality results for all test instances in relatively
short runtimes. The algorithm obtains APDs of 0.05 or below
for all but ten of the 126 test problems. The BKS is found 1073
out of 1260 times (approximately 85% of the total runs). All
but six of the average runtimes are less than 2 h, with anything
under 90 facilities/locations running in less than 1 h.

DivTS performed quite well on all four categories of test
instances. The worst overall APD (0.121) was for the type-1 test
instances. This was due to the Tai∗a instances, as the algorithm
always found the BKS on all runs for all but six of the 28 test
instances. The six instances with greater than 0.000 APDs
were the larger Tai∗a instances and Lipa90a. For the Lipa90a
instance, the BKS was still obtained in seven out of the ten
runs. There are 47 type-1 instances, with the average number
of facilities/locations (or n) being approximately 47.

For the type-2 instances, DivTS performed very well. The
overall APD for this category was 0.005, and the overall av-
erage BPD was 0.001. The algorithm did not always find the
BKS for some of the Sko∗ instances, the two Tho instances, and
the size-100 Wil instance. This category of instances contained
some of the biggest instances, with the average size of the
instances being approximately 50 facilities/locations. There
were 36 instances in this category.

The type-3 category contained the largest number of test
instances. There are 53 instances in this category, with the aver-
age size being approximately 25 facilities/locations. Although
this category contains the greatest number of instances, it also
has the smallest average problem size. DivTS performed well
on this category, with an overall APD of 0.024. The average
BPD for this test set was 0.000, which indicates that the BKS

was always found at least once for every test instance in the
category. In fact, the BKS was always found at least half the
time on all instances.

The last category contained the type-4 instances and was
the smallest category. This category contained only the Tai∗b
instances. The algorithm performed well on this category as
well, with an overall APD of 0.007 and an average BPD
of 0.001. The average size (number of facilities/locations)
of this category was approximately 49, and there were nine
instances.

Tables V–VIII give comparisons of the DivTS algorithm to
the following additional methods from the literature:

• GRASP [48];
• ACO-GA/LS [83];
• GA hybrid with a strict descent operator (GA/SD) [23];
• GA hybrid with a simple TS operator (GA-S/TS) [23];
• GA hybrid with concentric TS Operator (GA-C/TS) [23];
• GA hybrid with an improved concentric TS operator

(GA/IC-TS) [24];
• three TS variants (ETS1, ETS2, and ETS3) [57];
• two GA hybrids with TS (GA/TS and GA/TS/I) [55], [56];
• four ILS variants (ILS1, ILS2, ILS3, and ILS4) [79];
• two population-based ILS algorithms (ILS5 and ILS6)

[79];
• improved population-based ILS algorithm (I-ILS6) [79];
• three ACO variants (ACO1, ACO2, and ACO3) [80].

Tables V–VIII provide comparisons of the DivTS variant
with some of the best approaches from the literature, as well
as several other algorithms that may be classified as multi-
starts. The DivTS algorithm is highly competitive with these
algorithms in terms of both solution quality and computa-
tional time. However, true comparisons are not possible due
to the use of different hardware and the lack of full result
sets for all algorithms on all test problems. Although these
comparisons illustrate the strength and competitiveness of the
DivTS algorithm with some of the best performing approaches,
comprehensive benchmarks were not possible since we were
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TABLE VI
LONGER RUN DivTS COMPARISONS WITH THE LITERATURE FOR TYPE-2 PROBLEMS

TABLE VII
LONGER RUN DivTS COMPARISONS WITH THE LITERATURE FOR TYPE-3 PROBLEMS
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TABLE VIII
LONGER RUN DivTS COMPARISONS WITH THE LITERATURE FOR TYPE-4 PROBLEMS

unable to run all algorithms on the same test problems, using
the same hardware.

The reported runtimes over the set of algorithms used
for comparisons dramatically vary. The differing hardware,
compilers, and programming languages used make true com-
parisons of runtimes impossible. Therefore, runtimes are not
reported in the tables. However, the parameters of the DivTS
algorithm were purposefully set to be within the range of
computational times reported by the algorithms used for com-
parison. This compromise means that our algorithm will not
produce surprising runtimes compared with previous algo-
rithms from the literature. It can be seen from the previous
tables, where our results are presented, that our runtimes are
not significantly different from those of the RTS algorithm,
which, as mentioned, is a popular technique in the literature.
This indicates that the execution time for our algorithm is
reasonable.

Each of Tables V–VIII contains one category of test instances
following the classification given above. The name of the
test instance is given in the first column of each table. The
APD and BPD obtained by DivTS for each instance directly
follows. The APD for each algorithm used for comparison
is provided in the remaining columns of the tables. In some
cases, BPD was reported rather than APD in this paper. In
those instances, the column heading indicates this occurrence.
Since we have both APD and BPD for our test runs, we can
make comparisons using the correct data. Not all algorithms
utilized the same test set, so comparisons are only shown for the
overlapping instances. Blank spaces indicate that results were
not provided for that instance by the corresponding algorithm.
The average solution quality over all the instances run by the
corresponding algorithm is provided at the bottom of each
table.

Considering the algorithms that may be classified as multi-
start algorithms, DivTS did very well in comparison. We have
already demonstrated the improved performance of DivTS over
the RTS algorithm. The ETS algorithms only report results for
nine of the type-1 problems and all of the type-4 instances
(a total of 18 of the 126 instances). DivTS meets or exceeds the
solution quality of the ETS algorithm in four of the nine type-1
instances that can be compared. The ETS algorithms obtain
better solution quality on the remaining five type-1 instances.
ETS3 slightly edges out DivTS on one of the nine type-4
instances. However, DivTS’s average solution quality over
all type-3 instances is better than that of two of the ETS
variants. ETS3 slightly edges out DivTS by 0.001 on these
instances.

The traditional ILS algorithms, ILS1–ILS4, report results for
32 of the 126 instances. For the type-1 and type-2 instances
where comparisons can be made, DivTS obtains much better
solution quality on all instances. On type-3 and type-4 in-
stances, DivTS meets or exceeds the solution quality of the tra-
ditional ILS algorithms on all comparable instances. The ACO
algorithms report results on 29 of the 126 problems. The
comparable instances include several from each classification.
Again, DivTS meets or exceeds the solution quality on all
comparable instances against all three ACO variants.

GRASP reported results for 77 of the test instances from
type-1, type-2, and type-3 problems. The GRASP study gave
only BPDs. The quality of the best solution obtained by DivTS
meets or exceeds the GRASP algorithm for all 77 comparable
instances. In fact, in several cases, our average solution quality
is better than their BPD. As can be seen, our algorithm is
highly competitive with the algorithms that may be classed as
multistarts, with only the ETS algorithms obtaining comparable
solution quality.

Considering the more complex population-based approaches,
DivTS is still competitive. The hybrid ACO/GA/LS algorithm
ran 125 of the 126 instances. As with GRASP, we compare the
BPD rather than the APD. DivTS meets or exceeds the BPD on
all but two of the 125 comparable test instances.

The hybrid GA approaches of Drezner (GA/SD, GA-S/TS,
and GA-C/TS) provided results for only 29 out of the 126
instances. These instances are from the type-1 and type-2 cate-
gories only. DivTS outperforms Drezner’s GA hybrids with the
simple TS operator (GA/S-TS) and the strict descent operator
(GA/SD) in all cases. The original GA hybridized with the
concentric TS (GA/C-TS) wins in eight of the 29 problems.
The hybrid method that enhances a GA with an improved
concentric TS (GA/IC-TS) outperforms the DivTS algorithm in
11 of the 16 comparable cases. Misevicius’s hybrid GAs report
results for 28 of the 126 test instances from the type-1, type-3,
and type-4 classifications. The original hybrid GA (GA/TS)
performs better on seven of the 28 instances. The improved
version (GA/TS-I) performs better than DivTS on eight of the
28 instances. Our simple algorithm performs as well as or better
than these population-based metaheuristics on at least half of
the comparable test instances with the exception of the best
hybrid of Drezner (GA/IC-TS).

As previously noted, the platforms and runtimes differ be-
tween the algorithms, so the comparisons made here are only to
show that our algorithm is highly competitive with some of the
best variants from the literature. Without a full result set for all
algorithms, it is difficult to determine which, if any, algorithm
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is superior to all the others over a full set of QAP instances.
The results presented for DivTS illustrate that it performs well
on all problem sets and is competitive with the algorithms that
have been shown to work well. Among the multistart algo-
rithms, DivTS is highly competitive. DivTS even performs well
against many of the more complex population-based hybrid
algorithms.

VI. CONCLUSION

We have introduced several new diversification and multi-
start TS variants for the QAP. The resulting algorithms are
shown to improve upon the RTS algorithm commonly used
as a subprocedure in metaheuristic approaches for the QAP.
Our outcomes demonstrate that merely modifying the tabu
parameters, which influences the trajectory of the search by
altering the set of allowable moves, can provide improvements
in solution quality. We have also uncovered benefits from ap-
plying simple intensification and strategic diversification to the
search.

The success of the DivTS variant shows the merit of ap-
plying strategic diversification rather than relying on random-
ization. Likewise, the success of the simple adaptive memory
techniques used in the diversification and multistart variants
discloses the power of using search information and strategic
operators to guide the exploration.

Our findings particularly underscore the fact that high-
quality results can be obtained from approaches that capitalize
on the strategic use of information learned during the search
process. The diversification and multistart algorithms examined
in this paper are simple modifications of a traditional TS. As
such, they quickly execute and are programmatically straight-
forward. The performance of our algorithms is shown to be
highly competitive with that of more complicated hybrid meta-
heuristic approaches. Our outcomes suggest the promise of fur-
ther advances by applying greater use of intelligently designed
strategies. Additionally, the execution speed and programmatic
simplicity of our algorithms make them ideal candidates to use
in conjunction with more sophisticated methods such as path
relinking or scatter search.
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